
Department of Veterans Affairs
Decentralized Hospital Computer Program

Unwinder (XQOR)

Technical Manual

Version 7.1

August 1994

Information Systems Center
Salt Lake City, Utah

August 1994 Unwinder (XQOR) V. 7.1 Technical Manual i

Preface

This document describes the operation of the XQOR routines, which
are used in conjunction with the Protocol file to create modular
building blocks for applications. The Unwinder Technical Manual is
intended for DHCP developers and possibly for IRM (Information
Resource Management) personnel at VAMCs.

Preface

ii Unwinder (XQOR) V. 7.1 Technical Manual August 1994

August 1994 Unwinder (XQOR) V. 7.1 Technical Manual iii

Table of Contents

Introduction ..1
Implementation and Maintenance...3

Description of Protocol File Operations.............................3
Protocol Types...5

General Types...5
OE/RR Types...5

Routine Descriptions ..7
Files...9
Exported Menus & Options..9
Cross-References...9
Archiving & Purging ..9
Callable Routines ...11

EN^XQOR Entry Point ..11
EN1^XQOR Entry Point ..14
EN^XQORM Entry Point...14
DISP^XQORM1 Entry Point ...21
XREF^XQORM Entry Point ..22

External Relations..23
Required DHCP packages ..23
Database Integration Agreements.....................................23

Internal Relations...29
Package-Wide Variables...29
How to Generate On-Line Documentation................................31

Routines ..31
%INDEX..31

Checksum Routine..33
Glossary ..35
Index..37

Table of Contents

iv Unwinder (XQOR) V. 7.1 Technical Manual August 1994

August 1994 Unwinder (XQOR) V. 7.1 Technical Manual 1

Introduction

The Unwinder is a utility that is used in conjunction with the Protocol
file (#101) to create modular building blocks for applications.

The Unwinder allows hierarchical traversing of menus, as found in
Menu Management, and also the structuring of order protocols into
independent, reusable modules. Each node becomes a "building block"
from which more sophisticated modules may be built. For instance, the
node "Order Shirt" may have as sub-items, "Get Size," "Get Color,"
"Get Style," and "Get Delivery Date." Each of these sub-items may, in
turn, be used to build other modules.

Provisions have been made to allow additional building blocks to be
placed at the item level of the node. Their purpose is to allow
modifying actions to be executed and thus increase the flexibility of
each module.

 The following sections describe how developers can use the Unwinder
 for their applications.

Introduction

2 Unwinder (XQOR) V. 7.1 Technical Manual August 1994

August 1994 Unwinder (XQOR) V. 7.1 Technical Manual 3

Implementation and Maintenance

Description of Protocol File Operations

Information in the Protocol file is arranged into hierarchies. The
Unwinder works by navigating down the hierarchies, stacking the
path taken, so it may return back up the hierarchy by the same path.
The Unwinder is also capable of navigating the Option file.

This navigation works as follows: The system begins with an initial
node in the Protocol file and executes the entry action. If the node is a
menu, the items are displayed, selections are allowed, and the
selections are stacked as new nodes. If the node is not a menu, the
items are simply stacked as new nodes. (However, they may be
screened, just as menu items may be screened.) The same process is
then repeated with each new node. When there are no more new nodes,
the system returns back up the path it came down, executing exit
actions.

What this allows is not only the hierarchical traversing of menus, as
found in Menu Management, but the structuring of order protocols into
independent, reusable modules. Each node then becomes a "building
block" from which more sophisticated modules may be built. For
instance, the node "Order Shirt" may have as sub-items, "Get Size"
"Get Color," "Get Style," and "Get Delivery Date." Each of these sub-
items may in turn be used to build other modules. Provisions have
been made to allow additional building blocks to be placed at the item
level of the node. Their purpose is to allow modifying actions to be
executed and thus increase the flexibility of each module. For further
clarification, the following illustration demonstrates the sequence of
events. (This is only an example. Because of performance
considerations and the way packages are already set up, it is certainly
not necessary to go to this level of detail in setting up nodes in the
Protocol file.)

Implementation & Maintenance

4 Unwinder (XQOR) V. 7.1 Technical Manual August 1994

Assume the following entries are in the PROTOCOL file:

 NAME:
 ITEM TEXT:
 TYPE:
ENTRY ACTION:
 EXIT ACTION:
 ITEM:
 ITEM:

MY CLOTHES MENU
Order Clothes Menu
Protocol Menu

MY SHIRT
MY SOCKS

 NAME:
 ITEM TEXT:
 TYPE:
ENTRY ACTION:
 EXIT ACTION:
 ITEM:
 ITEM:

 NAME:
 ITEM TEXT:
 TYPE:
ENTRY ACTION:
 EXIT ACTION:
 ITEM:
 ITEM:

 NAME:
 ITEM TEXT:
 TYPE:
ENTRY ACTION:
 EXIT ACTION:
 ITEM:

 NAME:
 ITEM TEXT:
 TYPE:
ENTRY ACTION:
 EXIT ACTION:
 ITEM:

 NAME:
 ITEM TEXT:
 TYPE:
 ENTRY ACTION:
 EXIT ACTION:
 ITEM:
MODIFYING ACTION:

MY SHIRT
Shirt
Protocol
S STYLE="SHIRT"
K STYLE
MY CLOTHES ORDER

MY SOCKS
Socks
Protocol
S STYLE="SOCKS"
K STYLE
MY CLOSES ORDER

MY CLOTHES ORDER
Clothing Order
I '$D(STYLE)
D EN^GETSTYLE
K STYLE
MY GET SIZE
MY SIZE TYPE

MY GET SIZE
Get Size
Protocol
D EN^GETSIZE
D SIZE^CLEANUP

MY SIZE TYPE
Size Type
Protocol
D EN^SIZETYPE

These entries would create nodes related in the following ways:

 MY ORDER CLOTHES MENU MY CLOTHES ORDER MY GET SIZE MY SIZ

MY SHIRT MY SOCKS
 MY GET SIZE (MY SIZE TYPE)

MY CLOTHES ORDER

If a user selected "Shirt" from the Order Clothes Menu, the sequence of
actions executed would be as follows:

S STYLE="SHIRT" ;Entry action for "Shirt"

I '$D(STYLE) D EN^GETSTYLE ;Entry action for "Clothing Order"
D EN^SIZETYPE ;Entry action for "Size Type" (Note:

This is the modifying action of
"Get Size" when it is an item of
"Clothing Order")

D EN^GETSIZE ;Entry action for "Get Size"
D SIZE^CLEANUP ;Exit action for "Get Size"

K STYLE ; Exit action for "Clothing Order"
K STYLE ;Exit action for "Shirt"

Note that the protocol, MY CLOTHES ORDER, prompts for style if it is not
yet defined. This allows the protocol to be used independently, rather than be
dependent on the path which led to it. Also, the protocol, MY SIZE TYPE, is
used to show how a modifying action might be used to make the principal
protocol, MY GET SIZE, work more generically.

To summarize, the Unwinder works by navigating through a hierarchy of
menus and actions. Each node of the hierarchy represents a specific function
to be performed. These functions are developed for the various packages and
placed in the PROTOCOL file as a point of integration.

 Implementation & Maintenance

August 1994 Unwinder (XQOR) V. 7.1 Technical Manual 5

Protocol Types

There are several types of protocols. The type field of the protocol determines
the way the Unwinder operates on that particular protocol. The XQOR
routines are also executed when options of type Protocol, Protocol Menu, and
Extended Action are invoked from the Option file.

General Types

M (menu) A menu of selections is presented to the user. Fields in

the Protocol file and XQORM variables affect the
formatting and operation of menus. The menus
generally have multiple columns and allow multiple
selections.

X (extended action) An extended action processes all sub-items (entries in

the ITEM multiple) of the protocol after the entry
action and before the exit action. Sub-items may, in
turn, be extended actions (thus, the term "unwinder").
The sub-items are processed in SEQUENCE order, if
the SEQUENCE field is defined.

A (action) An action only processes the entry and exit actions.

Sub-items are ignored.

OE/RR Types

The following types are specific to OE/RR and should be used only in the
context of placing orders.

Q (protocol menu) A protocol menu is the same as a menu, except that an

OE/RR context is assumed. A provider prompt and an
"OE/RR Accept Orders" screen are presented
appropriately.

O (protocol) A protocol is the same as an extended action, except

that the Unwinder assumes orders are being placed.

L (limited protocol) A limited protocol is the same as an action, except that

the Unwinder assumes orders are being placed.

Implementation & Maintenance

6 Unwinder (XQOR) V. 7.1 Technical Manual August 1994

T (term) A term is a protocol that may be defined as a prompt
in a dialog. DIR calls are used to process the
prompting defined by a term protocol. Currently, this
type of protocol is used only for OE/RR generic order
definitions.

D (dialog) A dialog is a list of term protocols (listed in the ITEM

multiple). The individual prompts are presented in
sequence and up-arrow navigation between prompts is
allowed. This allows a dialog to occur with the user
without database updates. Currently, this type of
protocol is used only for OE/RR generic order
definitions.

All links to OE/RR are made through the routine, XQORO.

☞☞☞☞ NOTE: If OE/RR is not installed and a protocol type specific to OE/RR is
executed, an error message is displayed.

August 1994 Unwinder (XQOR) V. 7.1 Technical Manual 7

Routine Descriptions

Routines exported:

XQOR XQOR1 XQOR2 XQOR3 XQOR4 XQORD XQORD1
XQORI001 XQORINI1 XQORINI2 XQORINI3 XQORINI4 XQORINI5 XQORINIS
XQORINIT XQORM XQORM1 XQORM2 XQORM3 XQORM4 XQORM5
XQORM6 XQORMX XQORNTEG XQORO

Routine Descriptions:

XQOR Prepare to Unwind Options
XQOR1 Main Unwinding Loop
XQOR2 Process Extended Actions, Protocols
XQOR3 Process Menus, Protocol Menus
XQOR4 Process "^^" jump
XQORD Dialog Utility
XQORD1 Process Menus, WP during dialog
XQORM Menu Utility
XQORM1 Display selections & prompt
XQORM2 Lookup for Menu Utility
XQORM3 Lookup (cont.)
XQORM4 Menu Messages
XQORM5 Menu Help
XQORM6 Function Key Reader
XQORMX Compile formatted menus
XQORNTEG Package checksum checker
XQORO Order Entry Calls

 25 ROUTINES

Routines

8 Unwinder (XQOR) V. 7.1 Technical Manual August 1994

August 1994 Unwinder (XQOR) V. 7.1 Technical Manual 9

Files

 There are no files in the Unwinder utility. However, the Unwinder

provides its utility by operating on the Protocol File (exported with
OE/RR) and the Option File (exported with Menu Management).
These files are accessed by the Unwinder in a read-only manner.

Exported Menus & Options

 There are no menus and options in the Unwinder utility.

Cross-References

 There are no cross-references in the Unwinder utility.

Archiving & Purging

 There are no archiving and purging functions in the Unwinder

utility.

Archiving & Purging

10 Unwinder (XQOR) V. 7.1 Technical Manual August 1994

August 1994 Unwinder (XQOR) V. 7.1 Technical Manual 11

Callable Routines

EN^XQOR Entry Point

This is the main routine for navigating protocols. The routine processes the
initial protocol and the subordinate protocols. This processing of subordinate
protocols happens according to the type of protocol and the navigation
variables that get set along the way. For example, by defining a set of
protocols you could create the following entries:

Name

Item Text

Type

Entry Action

Exit Action

MYTOP
MYITM1
MYITM2
MYITM3
MYSUBITM

My Top
My Item 1
My Item 2
My Item 3
My SubItem

X
X
X
X
A

W !,"Top Entry"
W !,"Item 1 Entry"
W !,"Item 2 Entry"
W !,"Item 3 Entry"
W !,"SubItem Entry"

W !,"Top Exit"
W !,"Item 1 Exit"
W !,"Item 2 Exit"
W !,"Item 3 Exit"
W !,"SubItem Exit"

If MYITM1, MYITM2, and MYITM3 are placed in the item multiple of
MYTOP and MYSUBITM is placed in the item multiple of MYITM2, calling
EN^XQOR with MYTOP as the initial protocol should produce the following
results:

Top Entry
Item 1 Entry
Item 1 Exit
Item 2 Entry
SubItem Entry
SubItem Exit
Item 2 Exit
Item 3 Entry
Item 3 Exit
Top Exit

This assumes that MYITM1, MYITM2, and MYITM3 are entered in that
sequence or assigned sequence values of 1, 2, and 3, respectively.

Input Variable

X Identifies the initial protocol that EN^XQOR should
(required) process. X should be in variable pointer format. For example,

X="1234;ORD(101," would cause the processing to start with the
protocol that has an internal entry number of 1234. Similarly,
X="1234;DIC(19," would cause the processing to start with the option
that has an internal entry number of 1234.

 An alternative to using variable pointer format is to set X equal

to the name or number of the protocol and DIC equal to the
number or global reference of the file you are working in
(generally the Protocol file). For example, X="MYTOP" and

Callable Routines

12 Unwinder (XQOR) V. 7.1 Technical Manual August 1994

DIC=101 will begin processing at the MYTOP protocol. For
backwards compatibility, if X is not in variable pointer format
and DIC is not defined, operation in the Option file is assumed.

Navigation Variables

Navigation variables are optional and may be set anywhere inside the code
that is being executed by EN^XQOR. These variables affect the way XQOR
displays information, passes control to subsequent protocols, etc.

XQORQUIT Signals the Unwinder to not process any protocols that

are subordinate to the current protocol. Control is passed
to the next sibling protocol. In the above example, setting
XQORQUIT in the entry action of MYITM2 would
prevent MYSUBITM from being processed.

XQORPOP Signals the Unwinder to not continue processing sibling

protocols. Control is returned directly to the parent
protocol. For example, if XQORPOP is set in the entry
action of MYITM2, MYSUBITM and MYITM3 are not
processed and control is returned to MYTOP.

XQORFLG("SH") If set to 1, a subheader is displayed just before processing

any subordinate options. The subheader contains the
menu text of the option. Subheader displays may be
turned off by setting XQORFLG("SH") to 0. The default
value for XQORFLG("SH") is 0. For example, setting
XQORFLG("SH")=1 in the entry action of MYITM2 would
cause MYSUBITM to display as follows:

--- My Sub Item ---

SubItem Entry
SubItem Exit

XQORNOD Reference variable that identifies the protocol currently

being processed. This is in variable pointer format. For
example, if the currently executing protocol were
MYITMZ, with an internal entry number of 2456, then
XQORNOD would be:

2456;ORD(101,

 Callable Routines

August 1994 Unwinder (XQOR) V. 7.1 Technical Manual 13

XQORNOD(0) Reference variable that provides information about the
current protocol if the parent protocol was a menu type.
The information is in four pieces delineated by up-arrows
(^):

1) Internal entry number (inside the item multiple) of the

selected item
2) .01 field of the entry selected
3) Text that was displayed on the menu
4) What the user typed in to select the item

For example, if the MYTOP protocol were a menu instead
of an extended action, the three MYITM* protocols would
be presented as possible menu selections. If you select the
second, XQORNOD(0) might look something like:

1^2456^My Item 2^MY ITEM 2

When the Unwinder processes menu types, it is internally calling the
EN^XQORM entry point. Therefore, the following subscripted XQORM
variables may be set in the entry action of a protocol that is a menu type:

XQORM(0)
XQORM("A")
XQORM("B")
XQORM("H")
XQORM("S")
XQORM("?")
XQORM("??")
XQORM("KEY",keyword)
XQORM("XLATE",function key)

The subscripted XQORM variables will affect the way the menu is displayed
and processed. Setting one of these variables in the entry action will override
the equivalent setting defined in the Protocol file, if one exists. For example,
setting XQORM("S") will override what is set in the SCREEN field of the
protocol. See the description of the entry point, EN^XQORM for a description
of the XQORM variables.

Note: While the subscripted XQORM variables may be set, XQORM itself
should not be set, as EN^XQOR handles proper setting of XQORM before the
menu is displayed.

Output Variables

There are no output variables used with the Unwinder.

Callable Routines

14 Unwinder (XQOR) V. 7.1 Technical Manual August 1994

EN1^XQOR Entry Point

This entry point is identical to EN^XQOR, except that the entry and exit
actions of the initial protocol are not executed. This entry point provides
backwards compatibility with the way Kernel 6 processed protocols that were
defined in the Option file.

EN^XQORM Entry Point

This entry point handles the display of and selection from a menu. Note that
this routine processes a single menu only. This is the call EN^XQOR uses to
obtain menu selections. The caller is responsible to handle any selections
from the menu that are returned in the Y array. If you want navigation to the
selected items handled for you, use the EN^XQOR entry point. The menus
handled by this routine are the multiple selection, multiple column menus
that are typical in OE/RR.

Input Variables

XQORM A variable pointer to the menu that should be displayed.

For example,
(required) XQORM="1234;ORD(101," will display the menu in the

protocol that has an internal entry number of 1234 and
process it according to the field entries in the protocol
itself and the other XQORM variables that are set up.

XQORM(0) Is a string of flags that control the display and prompting

of the menu. If a numeric
(required) is included, it must be at the beginning of the string. The

following parameters are allowed:

 numeric Maximum number of selections allowed. If a

number is not specified, as many selections as
items on the menu are allowed.

 A Prompt for a selection from the menu (display
a "Select Item(s):" prompt, for example). If the
A is not included, selections will not be
prompted for.

 D Display the menu. If the D is not included, the
menu is not displayed. If prompting is allowed
(A), typing "?" will display the items.

 Callable Routines

August 1994 Unwinder (XQOR) V. 7.1 Technical Manual 15

 \ Suppress the line feed before the "Select
Item(s):" prompt. Used to control vertical
spacing on the screen.

 X Find only exact matches. You must type in the
entire text of the menu item for it to be
selected.

 F Disables saving selected items into DISV for
spacebar recall. Otherwise, items will be saved
and typing spacebar will recall the previous
selections.

 + Allows "+" and "-" to be returned as valid
selections, even though they are not on the
menu. This flag is generally not used, as the
keyword mechanism (see XQORM("KEY")
array) provides similar functionality.

 R Save keywords that have been entered for
spacebar recall. Normally, spacebar recalls
only items selected from the menu and not
keywords.

 r Save up arrow jumps for spacebar recall. If a
user jumps to another protocol (enters
"^^Health Summary," for example), the jump
is typically not saved for spacebar recall. The
"r" flag saves the jump for recall.

 The following are some examples of how these flags may be

used -

 2A allow a maximum of two selections, prompt

the user to select items but do not display
the menu initially (wait for the user to type
"??"), and save all selections for spacebar
recall

 AD\ allow unlimited selections, display the menu

initially, prompt the user for selections, place
the "Select" prompt immediately under the
menu with no white space, and save
selections for spacebar recall

 D display the menu only, do not prompt for

selections

XQORM("A") Text to use for the "Select" Prompt. For example,

XQORM("A")="Choose From Items 1-4:" will present the
user with that prompt. "Select Item(s):" is the default
prompt.

Callable Routines

16 Unwinder (XQOR) V. 7.1 Technical Manual August 1994

XQORM("B") Text to use as the default menu selection.
XQORM("B")="Item 1" would result in a prompt like
"Select Item(s): Item 1//."

XQORM("H") MUMPS code that, when executed, displays a header for

the menu. For example, XQORM("H")="W #,""Menu of
Shoe Styles""".

XQORM("S") MUMPS code that is executed before displaying each

menu item. If $T is true after the code is executed, the
menu item is selectable. If $T is false, the menu item is
not selectable and parentheses are placed around it.
When executed, DA(1) will be the internal entry of the
menu in the Protocol file and DA will be the internal
entry number of the item on the menu. The naked
reference will NOT be set. For example, XQORM("S")="I
DA#2" will cause menu items with even internal entry
numbers to not be selectable.

 NOTE: There are frequent requests to allow separate

screening logic for each item on the menu. This may be
accomplished by doing the following:

 1) For each item that you wish to screen, place screening

code in the SCREEN field of the protocol for that item.

 2) In the SCREEN field of the menu protocol, place the

following code:

I 1 X:$D(^ORD(101,+$P(^ORD(101,DA(1),10,DA,0),
"^",1),24)) ^(24)

XQORM("?") MUMPS code that replaces the default single question

mark help. For example, XQORM("?")="W !,""Type the
name of an item.""". The default double question mark
help is still provided. The double question mark help
explains the extended syntax for making selections from
the menu but is somewhat specific to OE/RR.

 Callable Routines

August 1994 Unwinder (XQOR) V. 7.1 Technical Manual 17

XQORM("??") MUMPS code that replaces all default help, both single
and double question mark. For example, XQORM("??")="D
HELP^MYRTN"

XQORM("NO^") If defined, disallows exiting the menu with "^." The user

is forced to make a selection.

XQORM("NO^^") If defined, disallows the use of the "^^" syntax by the user

for jumping to another protocol.

XQORM("KEY") An array of keywords that may be typed at the menu

prompt that are not shown on the menu. The format of
the keyword array is:

XQORM("KEY",keyword)=pointer to protocol ^ branch flag

 The 'pointer to protocol' must be the internal entry

number of an entry in the Protocol file. This protocol is
executed when the user types the keyword. If the branch
flag is set (i.e., equal to 1), control branches to that
protocol as if it were a menu selection. Otherwise,
EN^XQOR treats the entry as if it were a ^^-jump. For
example,

 XQORM("KEY","TIME")=1234 If "TIME" is typed, a protocol that

displays the current time is run
and then the user returns to the
menu.

 XQORM("KEY","QUIT")=5678^1 If "QUIT" is typed, the system
treats QUIT as if it were part of
the menu and the quit logic is
executed.

XQORM("XLATE") If function key interpretation is allowed, the

XQORM("XLATE") array allows a mapping between the
strings returned by the function keys and menu selections
or keywords. For example,

XQORM("XLATE","UP")="Scroll Up"
XQORM("XLATE","DOWN")="Scroll Down"
XQORM("XLATE","HELP")="??"

 Function key processing is allowed if the Kernel routine

^XGF is present.

Output Variables

Y All results are returned in Y. Y itself will be greater than

0 if items have been selected. Y is -1 if enter was pressed
without a selection or if '^' was entered.

Callable Routines

18 Unwinder (XQOR) V. 7.1 Technical Manual August 1994

Y(n) Each selection is in a numbered subscript. You should

traverse the subscripts with $ORDER, as they are not
always in strictly sequential order.

 For items selected normally from the menu -

Y(n)=item IEN ^ protocol IEN ^ displayed name ^ actual
input

 Item IEN (first piece) is the internal entry number of the

item within the item multiple (generally not that useful).
The protocol IEN (second piece) is the internal entry
number of the protocol for the selected item (this is what
you usually want to look at). The displayed item name
(third piece) is the item name as it appeared on the menu.
The actual user input (fourth piece) is what the user
actually typed. This is useful if the user entered
additional information using the "=" convention.

 For example, if you enter the following

Select Item(s): ED=3, DT

 The Y array might look like:

Y=2
Y(1)=3^2345^Edit^ED=3
Y(2)=7^3456^Details^DT

 When obtaining input from the user, special syntax is

allowed. This syntax allows users to select things that are
not on the menu. Typing "^^protocol name" allows the
user to jump directly to the entry identified by the
protocol name. When finished with the process executed
by that entry, the user is returned to the menu where the
"^^" was typed.

 If keywords are set up (see the XQORM("KEY")

description), the user may type these keywords to select
actions that are not directly on the menu. When the user
types "^^protocol name" or a keyword, that portion of the
Y array looks different. This is because an item has not
been directly selected from the menu.

 Callable Routines

August 1994 Unwinder (XQOR) V. 7.1 Technical Manual 19

 For entries preceded by "^^"(jump syntax) -

Y(n)=^^^text of jump

 In other words, there are three circumflexes, then the text

of what was typed after '^^'. In this case, it is up to you to
locate the protocol that matches the typed text and code
the jump.

 For keywords that were entered -

Y(n)=^^keyword^`IEN=text after keyword=

 The third piece contains the keyword. The fourth piece

begins with "`" (accent grave) followed by the internal
entry number of the protocol associated with the keyword.
The "`" (accent grave) aids in looking up the protocol to be
executed by forcing FileMan to look up by internal entry
number. If the user typed additional text after the
keyword, this is placed after the internal entry number
and delimited by equals signs. If the keyword should be
branched to, rather than treated as "^^jump," the
internal entry number of the protocol is also in the second
piece.

 So if the user types the following (assuming proper

keywords, etc. are set up) -

Select Item(s): ED=1,^^HEALTH SUMMARY,SHOW ORDERS,DT

 The Y array might look like:

Y=4
Y(1)=3^2345^Edit^ED=3
Y(2)=^^^HEALTH SUMMARY
Y(3)=^^SHOW^`4394=ORDERS=
Y(4)=7^3456^Details^DT

 Remember, you don't need to worry about processing the

Y array and handling protocol navigation if you use
EN^XQOR. This is done for you automatically.

 The EN^ZQORM entry point is a very low-level call that

is used by EN^XQOR. It is documented here to allow
those who desire the flexibility of processing things at this
very low level.

Callable Routines

20 Unwinder (XQOR) V. 7.1 Technical Manual August 1994

Examples

If you are in an account where OE/RR is installed, the following will
demonstrate how EN^XQORM is called and what is returned in the Y array.
You should be in programmer mode in a partition where you have logged in
through ^XUP (to set up the IO variables).

First, display the OE/RR review screen and make some selections by entering
the following commands:

S XQORM=$O(^ORD(101,"B","ORR REVIEW SCREEN",0))_"; ORD(101,"
S XQORM(0)="AD"
D EN^XQORM
ZW Y

If you selected items from the menu, these were listed in the Y array when
you displayed it using ZWRITE. Now if you want to allow the user to enter a
keyword, say "TIME," enter the following commands, and type "TIME" at the
select item(s) prompt:

S XQORM("KEY","TIME")=$O(^ORD(101,"B","OR GKEY TIME",0))
D EN^XQORM ; type time as one of the selections
ZW Y

When you view the Y array this time, the entry for the "TIME" keyword
should be there. To now change the select item(s) prompt to something else
and give it a default, enter the following commands:

S XQORM("A")="Type in something - "
S XQORM("B")="Quit"
D EN^XQORM
ZW Y

When the menu was displayed, the prompt at the bottom should have been
different. Again, any selections you made were listed in the Y array. You may
wish to continue with other experiments, such as seeing what happens to the
Y array when "^^jump" syntax is used, other input variables are changed,
etc.

 Callable Routines

August 1994 Unwinder (XQOR) V. 7.1 Technical Manual 21

DISP^XQORM1 Entry Point

If you have replaced the standard help by setting XQORM("??"), the menu
selections may be displayed from your help code by calling DISP^XQORM1
with X="?". For example,

S XQORM("??")="W !,""These are the selections:"" S X=""?"" D
DISP^XQORM1"

DISP^XQORM1 should only be called from within the code used by
XQORM("??").

Input Variables

X Must be "?"
(required)

Callable Routines

22 Unwinder (XQOR) V. 7.1 Technical Manual August 1994

XREF^XQORM Entry Point

Menus are compiled into the XUTL global. This should happen
automatically. If you need to force a menu to recompile, XREF^XQORM can
be used to do that.

Input Variables

XQORM Variable pointer to the protocol that should be

recompiled. For example,
(required)

S XQORM=$O(^ORD(101,"B","MY KEYWORD MENU",0))_";
ORD(101,"
D XREF^XQORM

August 1994 Unwinder (XQOR) V. 7.1 Technical Manual 23

External Relations

Required DHCP packages

Package Minimum Version

Kernel

7.1

OE/RR

2.5

Database Integration Agreements

NAME: DBIA344-A ENTRY: 344
CUSTODIAL PACKAGE: ORDER ENTRY/RESULT Salt Lake City

SUBSCRIBING PACKAGE: UNWINDER Salt Lake City
USAGE: Private APPROVED: APPROVED

STATUS: Active EXPIRES:
DURATION: Till Otherwise Agr VERSION:

FILE: 101 ROOT: ORD(101,
DESCRIPTION: TYPE: File

The following DBIA is granted between the Unwinder and OE/RR.

Read Access to File 101: The XQOR routines navigate the Protocol file
(101). To provide this navigation, XQOR needs read access to File 101.

ROUTINE:

NAME: DBIA351-A ENTRY: 351
CUSTODIAL PACKAGE: KERNEL San Francisco

SUBSCRIBING PACKAGE: UNWINDER Salt Lake City

USAGE:
Private APPROVED: APPROVED

STATUS: Active EXPIRES:
DURATION: Till Otherwise Agr VERSION:

FILE: 19 ROOT: DIC(19,
DESCRIPTION: TYPE: File

Read Access to File 19: When an Option that is a protocol (O) or protocol
menu (Q) is encountered by menu manager, control is turned over to XQOR.
XQOR needs to have read access to File 19 to be able to provide the
navigation of these protocols. This agreement would replace DBIA #5,
which was between OE/RR and Menu Driver.

ROUTINE:

Database Integration Agreements

24 Unwinder (XQOR) V. 7.1 Technical Manual August 1994

NAME: DBIA344-C ENTRY: 847
CUSTODIAL PACKAGE: ORDER ENTRY/RESULT Salt Lake City

SUBSCRIBING PACKAGE: UNWINDER Salt Lake City
USAGE: Private APPROVED: APPROVED

STATUS: Active EXPIRES:
DURATION: Till Otherwise Agr VERSION:

FILE:
100.99 ROOT: ORD(100.99,

DESCRIPTION: TYPE: File
Read Access to File 100.99: The OE/RR Parameters file (100.99) is
accessed in setting up some of the OE/RR variables and in determining if
OE/RR is running.

ROUTINE:

NAME: DBIA351-B ENTRY: 858
CUSTODIAL PACKAGE: KERNEL San Francisco

SUBSCRIBING PACKAGE: UNWINDER Salt Lake City
USAGE: Private APPROVED: APPROVED

STATUS: Active EXPIRES:
DURATION: Till Otherwise Agr VERSION:

FILE: ROOT: XUTL
DESCRIPTION: TYPE: File

Use of ^XUTL: The XQOR routines use ^XUTL("XQORM") and ^XUTL("XQORW") to
store compiled protocol menus. An agreement to allow use of these global
nodes would partially replace DBIA #4 (which erroneously identifies the
node used as ^XUTL("ORUM")). The portion of DBIA #4 which allows OE/RR to
use ^XUTL("OR",$J,package namespace) would need to remain as is.

ROUTINE:

NAME: DBIA351-C ENTRY: 859
CUSTODIAL PACKAGE: KERNEL San Francisco

SUBSCRIBING PACKAGE: UNWINDER Salt Lake City
USAGE: Private APPROVED: APPROVED

STATUS: Active EXPIRES:
DURATION: Till Otherwise Agr VERSION:

FILE: ROOT: DISV(
DESCRIPTION: TYPE: File

Use of ^DISV: The Unwinder uses ^DISV(DUZ,"XQORM") to store the items
that were selected for spacebar recall. I couldn't find a DBIA agreement
for this. When we originally discussed this (years ago), the condition
for using ^DISV was that the first subscript be DUZ so that Kernel could
maintain it. I need a new agreement for read/write access to
^DISV(DUZ,"XQORM").

ROUTINE:

 Database Integration Agreements

August 1994 Unwinder (XQOR) V. 7.1 Technical Manual 25

NAME: DBIA899 ENTRY: 899
CUSTODIAL PACKAGE: ORDER ENTRY/RESULT Salt Lake City

SUBSCRIBING PACKAGE: UNWINDER Salt Lake City
USAGE: Private APPROVED: APPROVED

STATUS: Active EXPIRES:
DURATION: Next Version VERSION: 2.5

FILE: 101.11 ROOT: XUTL("XQORW"
DESCRIPTION: TYPE: File

When OE/RR handles the prompting for generic orders, prompts that require
word processing answers store the entered text temporarily in file 101.11
(XQOR WORD PROCESSING). The lifespan of an entry in this file is several
minutes. The Unwinder uses this file when handling the order prompting
for OE/RR. Since this file is an OE/RR file, the Unwinder needs an
integration agreement for both read and write access to this file.

It would be possible to move this file into the Unwinder package.
However, this portion of the Unwinder is currently used exclusively by
OE/RR. Since the portion of OE/RR that handles order dialogs is being
rewritten (so OE/RR can handle the front door), I would prefer to wait
until version 3 of OE/RR before shifting around the custody of files too
much.

ROUTINE:

NAME: DBIA344-B ENTRY: 846
CUSTODIAL PACKAGE: ORDER ENTRY/RESULT Salt Lake City

SUBSCRIBING PACKAGE: UNWINDER Salt Lake City
USAGE: Private APPROVED: APPROVED

STATUS: Active EXPIRES:
DURATION: Till Otherwise Agr VERSION:

FILE: ROOT:
DESCRIPTION: TYPE: Other

The Unwinder was originally written as part of OE/RR in the namespace OR.
When the Unwinder functionality was separated into the XQOR routines, all
the links to OE/RR were isolated into the routine, XQORO. This routine
uses OE/RR variables, and calls into OE/RR entry points. The following
integration agreements are needed to support this routine (XQORO).

OE/RR Variables: The XQORO routine makes sure OE/RR variables are set to
the proper values between each protocol that is executed. The following
variables are killed between each protocol to protect the OE/RR
environment -

ORIFN,ORCOST,ORIT,ORSTRT,ORSTOP,ORTO,ORPURG,ORTX,ORSTS,ORPK,ORLOG,
ORPCL,OR,ORZ,ORNS

The following variables are reset between each protocol -

ORVP,ORPV,ORL,ORTS,ORDUZ,ORNP,OROLOC,ORGY,ORACTION,OROLD,ORNS,
ORTX,ORUP

ORPRFRM is used in conjunction with response time monitoring.

ROUTINE:

Database Integration Agreements

26 Unwinder (XQOR) V. 7.1 Technical Manual August 1994

NAME: DBIA344-D ENTRY: 848
CUSTODIAL PACKAGE: ORDER ENTRY/RESULT Salt Lake City

SUBSCRIBING PACKAGE: UNWINDER Salt Lake City
USAGE: Private APPROVED: APPROVED

STATUS: Active EXPIRES:
DURATION: Till Otherwise Agr VERSION:

FILE: ROOT:
DESCRIPTION: TYPE: Routine

ROUTINE: OR1
COMPONENT: ADD
VARIABLES: Use of ADD^OR1: This is called to set up a context for

adding orders. OREND and ORPTLK are checked after this
call to see if the context was successfully established.
This agreement, along with the one concerning the use of
AFT^OR1, would replace DBIA #8 and DBIA #46.

COMPONENT: AFT
VARIABLES: Use of AFT^OR1: This is called to present and OE/RR review

screen and to clear the 'add orders' context.

NAME: DBIA344-E ENTRY: 849
CUSTODIAL PACKAGE: ORDER ENTRY/RESULT Salt Lake City

SUBSCRIBING PACKAGE: UNWINDER Salt Lake City
USAGE: Private APPROVED: APPROVED

STATUS: Active EXPIRES:
DURATION: Till Otherwise Agr VERSION:

FILE: ROOT:
DESCRIPTION: TYPE: Routine

ROUTINE: ORX2
COMPONENT: PT1
VARIABLES: Use of PT1^ORX2: This unlocks the patient when exiting an

'add orders' context.

NAME: DBIA344-F ENTRY: 850
CUSTODIAL PACKAGE: ORDER ENTRY/RESULT Salt Lake City

SUBSCRIBING PACKAGE: UNWINDER Salt Lake City
USAGE: Private APPROVED: APPROVED

STATUS: Active EXPIRES:
DURATION: Till Otherwise Agr VERSION:

FILE: ROOT:
DESCRIPTION: TYPE: Routine

ROUTINE: ORUTL
COMPONENT: READ
VARIABLES: Use of READ^ORUTL: This awaits user input in a manner

consistant with OE/RR.

 Database Integration Agreements

August 1994 Unwinder (XQOR) V. 7.1 Technical Manual 27

NAME: DBIA344-G ENTRY: 851
CUSTODIAL PACKAGE:

ORDER ENTRY/RESULT Salt Lake City
SUBSCRIBING PACKAGE: UNWINDER Salt Lake City

USAGE: Private APPROVED: APPROVED
STATUS: Active EXPIRES:

DURATION: Till Otherwise Agr VERSION:
FILE: ROOT:

DESCRIPTION: TYPE: Routine

ROUTINE: ORGKEY
COMPONENT: SET
VARIABLES: Use of SET^ORGKEY: This sets up keywords that are allowed

during the 'add orders' context.

NAME: DBIA344-H ENTRY: 852
CUSTODIAL PACKAGE: ORDER ENTRY/RESULT Salt Lake City

SUBSCRIBING PACKAGE: UNWINDER Salt Lake City
USAGE: Private APPROVED: APPROVED

STATUS: Active EXPIRES:
DURATION: Till Otherwise Agr VERSION:

FILE:
ROOT:

DESCRIPTION: TYPE: Routine

ROUTINE: ORUHDR
COMPONENT: OE
VARIABLES: Use of OE^ORUHDR: This sets up the menu headers

appropriate for OE/RR with the display of a protocol menu
during an 'add orders' context. The variable ORUIEN, which
identifies the menu, is set and killed.

NAME: DBIA351-D ENTRY: 860
CUSTODIAL PACKAGE: KERNEL San Francisco

SUBSCRIBING PACKAGE: UNWINDER Salt Lake City
USAGE: Private APPROVED: APPROVED

STATUS: Active EXPIRES:
DURATION: Till Otherwise Agr VERSION:

FILE: ROOT:
DESCRIPTION: TYPE: Routine

Call to ABT^XQ12: The Unwinder calls ABT^XQ12. I believe this is part of
the response time monitoring. The local variable, XQXFLG, is also checked
when making this call. Agreement is made to call ABT^XQ12 and check the
XQXFLG variable or this needs to be placed on the list of supported
references.

ROUTINE: XQ12
COMPONENT: ABT
VARIABLES:

Database Integration Agreements

28 Unwinder (XQOR) V. 7.1 Technical Manual August 1994

August 1994 Unwinder (XQOR) V. 7.1 Technical Manual 29

Internal Relations

 There are no internal relations in the Unwinder utility.

Package-Wide Variables

 There are no package-wide variables in the Unwinder utility.

Internal Relations

30 Unwinder (XQOR) V. 7.1 Technical Manual August 1994

August 1994 Unwinder (XQOR) V. 7.1 Technical Manual 31

How to Generate On-Line Documentation

Routines

The namespace for the Unwinder utility is XQOR. A listing/printout of any
or all of the Unwinder routines can be produced by using the Kernel option
XUPRROU (List Routines), which is on the XUPR-ROUTINE-TOOLS menu
on the XUPROG (Programmer Options) menu, a sub-menu of the EVE
(Systems Manager Menu) option.

Systems Manager Menu [EVE]

 Programmer Options [XUPROG]
 Routine Tools [XUPR-ROUTINE-TOOLS]

 List Routines [XUPRROU]

When prompted with "routine(s) ? >:" type in XQOR* to get a listing of
all Unwinder routines.

The first line of each routine contains a brief description of the general
function of the routine. A first-line listing can be produced by using the
Kernel option XU FIRST LINE PRINT (First Line Routine Print).

Systems Manager Menu [EVE]

 Programmer Options [XUPROG]
 Routine Tools [XUPR-ROUTINE-TOOLS]

 First Line Routine Print [XU FIRST LINE PRINT]

%INDEX

%INDEX is a routine that produces a report called the VA
Cross-Referencer—a technical and cross-reference listing of one routine or a
group of routines, with a summary of errors and warnings for routines that
do not comply with VA programming standards and conventions, a list of
local and global variables and what routines they are referenced in, and a
listing of internal and external routine calls. In programmer mode:
D ^%INDEX. When selecting routines, select XQOR*.

On-line Documentation

32 Unwinder (XQOR) V. 7.1 Technical Manual August 1994

August 1994 Unwinder (XQOR) V. 7.1 Technical Manual 33

Checksum Routine

XQOR 8446896
XQOR1 12239132
XQOR2 4783934
XQOR3 6956058
XQOR4 5404137
XQORD 5245554
XQORD1 2990726
XQORI001 2683365
XQORINI1 5626907
XQORINI2 5232646
XQORINI3 16095121
XQORINI4 3357818
XQORINI5 366739
XQORINIS 2218558
XQORINIT 10854706
XQORM 2970763
XQORM1 3913139
XQORM2 8125756
XQORM3 6109644
XQORM4 4355781
XQORM5 2832749
XQORM6 8695
XQORMX 5081453
XQORO 11593614

Checksum Routine

34 Unwinder (XQOR) V. 7.1 Technical Manual August 1994

August 1994 Unwinder (XQOR) V. 7.1 Technical Manual 35

Glossary

Action M code invoked by a protocol.

Dialog A type of protocol that contains other protocols which

are term protocol. Each term protocol issues a single
prompt.

Item A protocol which has a child relationship to another

protocol.

Keyword A word that is not contained on a menu, but which,

when entered by the user, will allow a specified action to
be taken. This provides a function similar to secondary
menus in Menu Management.

Menu A selection list from which the user may choose. The

selection(s) determine which protocols are executed
next.

Navigation The process of selecting which branches of the Protocol

file logic tree should be taken. The protocol file sets up
modules of code in a tree-like fashion. User entries
determine the pathway to take through the branches of
the tree.

Protocol A file entry which can be viewed as a module of code.

Each module of code may optionally contain other
modules of code. Other fields in each file entry
determine conditions under which the module should be
executed, what should be presented to the user, etc.

Stack A data structure that allows information to be stored in

a fashion such that the last information stored is the
first information retrieved.

Term A type of protocol that allows the definition of an

individual prompt within a dialog.

Glossary

36 Unwinder (XQOR) V. 7.1 Technical Manual August 1994

Unwind Another term for navigation. Unwind is sometimes used
to convey the idea of a single protocol causing the
invocation of other protocols, which in turn invoke
additional protocols, etc.

^^jump A double up-arrow jump. This is the syntax a user may

use to begin execution of a protocol which is not on the
current menu. When execution of the protocol is
completed, the user is returned to the original menu and
the context of the original menu is restored.

August 1994 Unwinder (XQOR) V. 7.1 Technical Manual 37

Index
%INDEX, 31

A

Archiving & Purging, 9

C

Checksum Routine, 33
Cross-References, 9

D

Default help, 17
DISP^XQORM1 Entry Point, 21
Double question mark help, 16

E

EN^XQOR Entry Point, 11
EN^XQORM Entry Point, 14
EN1^XQOR Entry Point, 14
Exported Menus & Options, 9
External Relations, 23

F

Files, 9
Function key interpretation, 17

G

Glossary, 35

H

Help, 21
How to Generate On-Line Documentation, 31

I

Implementation and Maintenance, 3
Input Variable, 11
Input Variables, 14, 21, 22
Internal Relations, 29
Introduction, 1

K

Keywords, 17, 18, 19

N

Navigation Variables, 12

O

On-Line Documentation, 31
Output Variables, 13, 17

P

Package-Wide Variables, 29
Protocol File Operations, 3
Protocol Types, 5

R

Review screen, 20
Routine Descriptions, 7
Routines, 31

X

XQORFLG("SH"), 12
XQORM, 14, 22
XQORM(0), 14
XQORM("?"), 16
XQORM("??"), 17
XQORM("A"), 15
XQORM("B"), 16
XQORM("H"), 16
XQORM("KEY"), 17
XQORM("NO^"), 17
XQORM("NO^^"), 17
XQORM("S"), 16
XQORM("XLATE"), 17
XQORM\(0\), 14
XQORNOD, 12
XQORNOD(0), 13
XQORO, 6
XQORPOP, 12
XQORQUIT, 12
XREF^XQORM Entry Point, 22

Index

38 Unwinder (XQOR) V. 7.1 Technical Manual August 1994

	Cover Page
	Preface
	Table of Contents
	Introduction
	Implementation and Maintenance
	Description of Protocol File Operations
	Protocol Types
	General Types
	OE/RR Types

	Routine Descriptions
	Files
	Exported Menus & Options
	Cross-References
	Archiving & Purging
	Callable Routines
	EN^XQOR Entry Point
	EN1^XQOR Entry Point
	EN^XQORM Entry Point
	DISP^XQORM1 Entry Point
	XREF^XQORM Entry Point

	External Relations
	Required DHCP packages
	Database Integration Agreements

	Internal Relations
	Package-Wide Variables
	How to Generate On-Line Documentation
	Routines
	%INDEX

	Checksum Routine
	Glossary
	Index

